Correct Depth POM & RCSM Cover

从视差映射、浮雕映射中获取正确的深度值

POM和RCSM 在我之前的文章在Unity里实现松散圆锥步进Relaxed Cone Step Mapping就已经介绍过了视差映射和松散圆锥步进浮雕映射的计算方法了,但是之前并没有对计算深度值做相应的研究,同时也限制于篇幅的原因就没有再展开了,这篇文章相当于是之前文章的后续。为了简便,后续将这两种计算方法统称为视差映射。 在视差映射中计算深度值是一个很直接的想法,因为很有可能会有其他物体被放置在视差映射的表面,与之发生穿插,如果不做特殊处理,就会使用模型本身的深度值进行深度比较,导致别的物体不能有正确的被遮挡的效果,削弱了视差映射带来的真实感。网上我找了一圈,并没有找到和计算视差映射的深度值相关的文章,因此我想用这篇文章进行相关的介绍。 Unity的高清管线(HDRP)的Lit Shader支持计算像素深度偏移,提供了Primitive Length,Primitive Width,和Amplitude三个参数。Amplitude可以用来控制视差映射的强度值,虽然其一个单位和世界空间的一米完全不能直接等同起来,但是值越大视差看上去就越深,可以根据视觉实时调整这个参数。另外两个参数就很奇怪了,居然和模型的大小有关,同一个材质球,用在Quad上这里就要填1,用在Plane上就要填10,哪有这种道理?虚幻引擎则是提供了POM的接口,至于输入和输出完全都由用户控制,这里就不太好直接比较了。 回顾POM的计算过程 视差映射一般不会直接在世界空间步进,而是会先将世界空间的视线viewWS转换到切线空间viewTS,在切线空间步进。照常理_ParallaxIntensity是用来控制视差映射的深度的,因此会使用这个参数控制z方向步进的距离,但为了方便和高度图中记载的高度进行对比,会先对viewTS的z分量进行归一化,将_ParallaxIntensity在步进时乘到viewTS的xy分量上,之后就是循环比较深度进入下一个循环了。 但是为什么是切线空间呢?这是因为切线tangent和副切线bitangent代表了贴图UV的xy的正方向,将视线转换到切线空间,其实目的是将视线转到UV空间,或者说是贴图空间(Texture Space,因为其与切线空间的相似性,我们还是用TS来做简写)。这里就出现了最重要的一个问题,Unity中通过GetVertexNormalInputs获得到的世界空间的切线是经过归一化的,丢失了物体自身的缩放,所以我们其实应该先将世界坐标的视线viewWS转换到物体空间viewOS,然后再使用物体空间的tbn矩阵,将viewOS转换到切线空间viewTS。但又如我上面说到的,我们真实的目的是贴图空间,切线空间和贴图空间是存在差异性的。这也就是为什么Unity的HDRP要使用额外的参数Primitive Length和Primitive Width了,这两个参数的目的是通过额外的缩放,将切线空间和贴图空间对应起来。 这两个参数的意义应当是,贴图空间的xy分量每一个单位在物体空间的长度,这里我们记为uvScale。同时我们可以顺理成章地正式引入_ParallaxIntensity这个参数,它的含义应当是,贴图中颜色为0的点对应的物体空间的深度值。贴图空间转换到物体空间,只需要对xyz三个分量分别乘上uvScale.x,uvScale.y,和_ParallaxIntensity即可。_ParallaxIntensity这个参数我们可以作为材质球的一个输入进行控制,uvScale是一个跟模型相关的参数,我们可以在Geometry Shader中计算而得。 uvScale的计算 如上面所属,uvScale指代的是贴图空间的xy分量每一个单位在物体空间的长度。对于两个顶点v0和v1,贴图空间的xy分量其实就是这两个顶点uv值的差,物体空间的长度其实就是两个顶点之间的距离,为了对应到贴图空间上,我们需要计算这段距离在切线和副切线上的投影长度,后者除以前者就是我们需要的uvScale了。由于构成三角形的三个顶点可能会存在某两个顶点之间uv的某个分量的变化率为0,导致我们计算uvScale的时候除以零,我们在检测到这个情况的时候使用第三个顶点即可。 贴图空间变换 在获得了物体空间的切线、副切线和法线之后,为了构成贴图空间的三个基向量,我们需要对这个向量使用uvScale和_ParallaxIntensity进行缩放。这个缩放导致了我们按照以往的float3x3(tangentOS * uvScale.x, bitangentOS * uvScale.y, normalOS * _ParallaxIntensity)构成的矩阵不再是一个正交矩阵,它实际上是贴图空间到物体空间的变换矩阵的转置。因此将物体空间的视线viewOS转换到贴图空间viewTS时,我们要用这个矩阵的转置的逆左乘viewOS,将贴图空间的视线viewTS转换到物体空间viewOS时,我们要用这个矩阵的转置左乘viewTS。 深度的获取 这个就相对来说比较简单了,我们在贴图空间步进的时候,可以知道我们在贴图空间步进的z方向的深度值len。而由于我们的viewTS会做除以z分量的归一化,我们只需要用归一化前的-viewTS乘上len再除以z分量,就能知道我们在贴图空间中总的步进的向量,将其转换到物体空间再转换到世界空间,和当前点的世界空间的坐标相加后再转换到裁剪空间,其z分量除以w分量就是我们需要的深度值了。 具体的代码 这里只做了可行性的研究,应该有个方法能够简化计算矩阵的逆这一步操作。在计算世界空间的切线、副切线和法线的时候,可以不进行归一化,这样我们也就不需要先转换到物体空间再转换到贴图空间了。 POMShader.shader Shader "zznewclear13/POMShader" { Properties { [Toggle(OUTPUT_DEPTH)] _OutputDepth ("Output Depth", Float) = 1 _BaseColor("Base Color", Color) = (1, 1, 1, 1) _MainTex ("Texture", 2D) = "white" {} _HeightMap("Height Map", 2D) = "white" {} _NormalMap("Normal Map", 2D) = "bump" {} _NormalIntensity("Normal Intensity", Range(0, 2)) = 1 _ParallaxIntensity ("Parallax Intensity", Float) = 1 _ParallaxIteration ("Parallax Iteration", Float) = 15 } HLSLINCLUDE #include "Packages/com....

March 16, 2024 · zznewclear13
Relaxed Cone Step Mapping Cover

在Unity里实现松散圆锥步进Relaxed Cone Step Mapping

阅读前提示 由于本文使用的贴图均为LearnOpenGL网站上的贴图,其法线贴图和一般Unity或Unreal引擎中的法线贴图的Y分量是相反的,因此在计算世界坐标的bitangent的时候会额外再乘上一个sign,在正常情况下是不需要的。 视差效果 在三角形面数比较受限的情况下,往往会考虑使用一张高度图,通过视差的计算去渲染出一种3D的效果(虽然现在直接用曲面细分Tessellation似乎是一种更普遍的且更有效的方法)。有两种计算视差的方法,一种叫做Parallax Occlusion Mapping,先假定高度的层数,然后对每一层计算出合适的位置和颜色,从而达到3D效果;另一种叫做Cone Step Mapping,是根据高度图预先计算出每个点对于其他所有像素的最大的圆锥张角(有点像AO),根据圆锥张角快速步进,最后使用二分法计算出最终的交点的颜色。第一种方法有一个比较大的缺点,就是在视角比较接近平面的时候,如果采样次数不是很高,就会看到一层一层的效果,可以通过对最后一次计算深度进行线性插值在一定程度上减轻一层一层的问题;第二种方法的缺点是,当采样次数较小时,产生的图像会有一定程度的扭曲,但不会有一层一层的感觉,此外相较于第一种会有一个优点,较细物体不会被跳过。在GPU Gems 3中提到了一种Cone Step Mapping的优化,叫做Relaxed Cone Step Mapping,相较于之前计算最大张角的方式,这种优化通过确保通过圆锥的射线与圆锥内部的高度图至多只有一个交点,减少了一开始圆锥步进的次数。本文就主要使用这种方法进行计算,也许将圆锥的顶部放在比当前高度图更深的位置能够更加减少步进的次数,不过我稍微尝试了一下好像效果并不是特别理想。 Parallax Occlusion Mapping可以在Learn OpenGL里找到介绍和优化方案,Shadertoy上也有开源的代码可以参考。UE5中有一个叫Get Relief!的插件,可以用来快速生成Relaxed Cone Step Mapping的预计算的贴图,也提供了渲染的Shader。这个插件的作者Daniel Elliott也在GDC2023上分享了制作的思路,如果链接打不开的话这里还有一个GDC Vault的链接。 本文使用的贴图可以在Learn OpenGL中给出的下载链接中找到。为了看上去舒服一些,这里对displacement贴图的颜色进行了反向。 下图是两种视差做法的比较,左边是Parallax Occlusion Mapping,右边是Relaxed Cone Step Mapping,两者的采样次数是相同的,可以看到POM在较极限的情况下会有分层感而RCSM会有扭曲。RCSM使用的贴图也放在下面了,R通道是高度图,G通道是圆锥的张角。本文使用的是Unity 2021.3.19f1c1。 生成预计算的贴图 和Parallax Occlusion Mapping直接使用深度图不同的是,Cone Step Mapping需要预先计算出一张圆锥张角的图,圆锥的张角可以使用圆锥底的半径除以圆锥的高来表示,记为coneRatio。本文中使用的是高度图,但实际计算中会使用1减去高度值,对应的是从模型表面到实际高度的深度值。由于深度值只会在01之间,uv也只会在01之间,因此对于最深的点,其最大的圆锥张角不会大于1。 “确保通过圆锥的射线与圆锥内部的高度图至多只有一个交点”,对于圆锥顶部的currentPos和圆锥底部的rayStartPos(这个圆锥是一个倒立的圆锥,其底部和模型表面相平),可以采样一个目标点cachedPos,当cachedPos的深度小于currentPos的深度时,沿着cachedPos - rayStartPos的方向移动cachedPos的位置并一直采样所有像素samplePos,直到samplePos的深度值小于cachedPos(即射线穿过高度图并穿出),根据samplePos和currentPos就能计算出一个圆锥的张角coneRatio。循环所有的像素就能得到最小的圆锥张角了。 为了减少单次计算的消耗,本文会先将整张图片分成NxN大小的区域,在一次循环中会计算所有像素对于这NxN大小的区域的圆锥张角,循环所有的区域就能得到最后的圆锥张角了。同时只需要让N等于THREAD_GROUP_SIZE,就能使用group shared memory仅通过一次采样缓存这些区域的深度值。再有就是Early Exit的优化,当cachedPos在贴图外部,当cachedPos的深度大于currentPos的深度,当cachedPos的圆锥张角大于当前最小的圆锥张角,在这些情况下可以直接结束向外步进的循环。更多的优化方法也都能在Get Relief!的分享中找到。 具体的代码 RCSMComputeShader.compute 用于生成Relaxed Cone Step Mapping的贴图。PreProcessMain用于处理最一开始的深度图,预先设置最大的coneRatio为1。Early Exit是减少运算时间的关键。 #pragma kernel PreProcessMain #pragma kernel RCSMMain #include "Packages/com.unity.render-pipelines.core/ShaderLibrary/Common.hlsl" #include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/Core.hlsl" Texture2D<float4> _SourceTex; RWTexture2D<float4> _RW_TargetTex; SamplerState sampler_LinearClamp; float4 _TextureSize; float2 _CacheOffset; #define THREAD_GROUP_SIZE 16u [numthreads(8, 8, 1)] void PreProcessMain(uint3 id : SV_DispatchThreadID) { uint2 tempID = uint2(id....

July 1, 2023 · zznewclear13
zznewclear13 技术美术 图形学 个人博客 technical art computer graphics